Notable Changes

• The standards with an asterisk or ETS have embedded alignment to Engineering Standards. Pull those standards out and note this by placing the alignment at the end of the standard so teachers will be able to reference them more easily. The grade bands of Engineering, Technology, and Application of Sciences are listed in each grade and show alignment for the whole grade band.

• To keep the coding system of the standards consistent with other South Dakota Standards, change "MS" to "6-8" and "HS" to "9-12"

• Include the specific Core Ideas at the beginning of each grade level to give teachers easy access to those.

• Bolded items indicated changes.

Standard	2015 Standard	Proposed Standard
Code		
K-PS2-2	Analyze data to determine if a design solution works as	Analyze data to determine if a design solution works as
	intended to change the speed or direction of an object with a	intended to change the speed or direction of an object with a
	push or a pull.* (SEP: 4; DCI: PS2.A, ETS1.A; CCC: Cause/Effect)	push or a pull. (SEP: 4; DCI: PS2.A, ETS1.A; CCC: Cause/Effect)
		Alignment may include K-2-ETS1-1
K-PS2-3	Make observations to determine the effect of sunlight on	K-PS 3-1
	Earth's surface. (SEP: 3; DCI: PS3.B; CCC: Cause/Effect)	
K-PS3-2	Design and build a structure that will reduce the warming	Design and build a structure that will reduce the warming effect
	effect of sunlight on an area.* (SEP: 6; DCI: PS3.B; CCC:	of sunlight on an area. (SEP: 6; DCI: PS3.B, ETS1.B; CCC:
	Cause/Effect)	Cause/Effect) Alignment may include K-2-ETS1-2
K-ESS2-1	Use and share observations of local weather conditions to	Plan and carry out observations of local weather conditions to
	describe patterns over time. (SEP: 4; DCI: ESS2.D; CCC:	describe patterns over time. (SEP: 4; DCI: ESS2.D; CCC: Patterns)
	Patterns)	
K-ESS3-2	Engage in argument from evidence for how plants and animals	K-ESS 2-2
	(including humans) can change the environment to meet their	
	needs. (SEP: 7; DCI: ESS2.E, ESS3.C; CCC: Systems)	
K-ESS3-1	Use a model to represent the relationship between the needs	Use a model to represent the characteristics of and the
	of different plants or animals (including humans) and the	relationship between various plants and animals in the places
	places they live. (SEP: 2; DCI: ESS3.A; CCC: Systems)	they live. (SEP: 2; DCI: ESS3.A; CCC: Systems)
K-ESS3-2	Ask questions to obtain information about the purpose of	Ask questions to obtain information about the purpose of
	weather forecasting to prepare for, and respond to, severe	weather forecasting to prepare for, and respond to, severe
	weather.* (SEP: 1, 8; DCI: ESS3.B, ETS1. A; CCC: Cause/Effect)	weather. (SEP: 1, 8; DCI: ESS3.B, ETS1.A; CCC: Cause/Effect)
		Alignment may include K-2-ETS1-1

K-ESS3-3	Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.* (SEP: 8; DCI: ESS3.C; ETS1.B; CCC: Cause/Effect)	Communicate solutions that will reduce the impact of humans on the land, water, air, and living things in the local environment. (SEP: 8; DCI: ESS3.C, ETS1.B; CCC: Cause/Effect) Alignment may include K-2-ETS1-2
1-PS4-4	Design and build a device that uses light or sound to solve the problem of communicating over a distance.* (SEP: 6; DCI: PS4.C; CCC: Technology)	Design and build a device that uses light or sound to solve the problem of communicating over a distance. (SEP: 6; DCI: PS4.C, ETS1.B; CCC: Cause/Effect) Alignment may include K-2-ETS1-2
1-LS1-1	Design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.* (SEP: 6; DCI: LS1.A, LSI.D; CCC: Structure/Function, Technology)	Construct an explanation and design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs. (SEP: 6; DCI: LS1.A, LSI.D, ETS1.A; CCC: Structure/Function) Alignment may include K-2-ETS1-1
1-ESS1-2	Make observations at different times of the year to relate the amount of daylight to the time of year. (SEP: 3; DCI: ESS1.B; CCC: Patterns)	Make observations and compare the amount of daylight at different times of the year. (SEP: 3; DCI: ESS1.B; CCC: Patterns)
2-PS1-2	Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* (SEP: 4; DCI: PS1.A; CCC: Cause/Effect, Technology)	Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose. (SEP: 4; DCI: PS1.A, ETS1.C; CCC: Cause/Effect) Alignment may include K-2-ETS1-3
2-PS1-4	Construct an argument using reasoning and evidence that some changes caused by heating or cooling can be reversed and some cannot. (SEP: 7; DCI: PS1.B; CCC: Cause/Effect)	Construct an evidence-based argument using reasoning and evidence that some changes caused by heating or cooling can be reversed and some cannot. (SEP: 7; DCI: PS1.B; CCC: Cause/Effect)
2-LS2-2	Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants. (SEP: 2; DCI: LS2.A, ETS1.B; CCC: Structure/Function)	Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants. (SEP: 2; DCI: LS2.A, ETS1.B; CCC: Structure/Function) Alignment may include K- 2ETS1-2
2-ESS1-1	Use information from several sources to provide evidence that Earth events can occur quickly or slowly. (SEP: 6; DCI: ESS1.C; CCC: Stability/Change)	Use information from several sources to construct an explanation that Earth events like volcanic explosions , earthquakes, weather, erosion, etc. can occur quickly or slowly. (SEP: 6; DCI: ESS1.C; CCC: Stability/Change)

2-ESS2-1	Compare multiple solutions designed to slow or prevent wind	Compare multiple solutions to develop a model designed to
2 2002 1	or water from changing the shape of the land (SEP: 6: DCI:	slow or prevent wind or water from changing the shape of the
	ESS2 A ETS1 C: CCC: Stability/Change Technology)	land (SEP: 6: DCI: ESS2 A ETS1 C: CCC: Stability/Change)
	LIJZ.A, LIJI.C, CCC. Stability/change, recimology)	Alignment may include K 2 ETS1.2
2,5662,2		Alignment may include R-2-E131-5
2-ESS2-2	Develop a model to represent the shapes and kinds of land	Obtain and evaluate information about the shapes and kinds of
	and bodies of water in an area. (SEP: 2; DCI: ESS2.B; CCC:	land and bodies of water in your local areas. (SEP: 8; DCI:
	Patterns)	ESS2.B; CCC: Stability/Change)
2-ESS2-3	Obtain information to identify where water is found on Earth	Obtain information to identify where water is found on Earth
	and that it can be solid or liquid. (SEP: 8; DCI: ESS2.C; CCC:	and that it can be solid, liquid, or gas . (SEP: 8; DCI: ESS2.C; CCC:
	Patterns)	Patterns)
3-PS2-4	Define a simple design problem that can be solved by applying	Define a simple design problem that can be solved by applying
	scientific ideas about magnets.* (SEP: 1; DCI: PS2.B; CCC:	scientific ideas about magnets. (SEP: 1; DCI: PS2.B, ETS1.A; CCC:
	Technology)	Cause/Effect) Alignment may include 3-5-ETS1-1
3-LS4-4	Make a claim about the merit of a solution to a problem	Make an evidence-based claim about the validity of a solution
	caused when the environment changes and the types of plants	to a change in the environment that affects the types of plants
	and animals that live there may change.* (SEP: 7; DCI: LS2.C,	and animals that live there. (SEP: 7; DCI: LS2.C, LS4.D, ETS1.A;
	LS4.D; CCC: Systems, Technology)	CCC: Systems) Alignment may include 3-5-ETS1-1
3-ESS2-1	Represent data in tables and graphical displays to describe	Represent data in tables and graphical displays to describe
	typical weather conditions expected during a particular	weather conditions during a particular season. (SEP: 4; DCI:
	season. (SEP: 4; DCI: ESS2.D; CCC: Patterns)	ESS2.D; CCC: Patterns)
3-ESS3-1	Make a claim about the merit of a design solution that	Make an evidence-based claim about the validity of a design
	reduces the impacts of a weather-related hazard.* (SEP: 7;	solution that reduces the impacts of a weather-related hazard.
	DCI: ESS3.B ; CCC: Cause/Effect, Technology)	(SEP: 7; DCI: ESS3.B, ETS1.A; CCC: Cause/Effect) Alignment may
		include 3-5-ETS1-1
4-PS3-4	Design, test, and refine a device that converts energy from	Design, test, and refine a device that converts energy from one
	one form to another. * (SEP: 6; DCI: PS3.B, PS3.D, ETS1.A; CCC:	form to another. (SEP: 6; DCI: PS3.B, PS3.D, ETS1.A; CCC:
	Energy/Matter)	Energy/Matter) Alignment may include 3-5-ETS1-1
4-PS4-3	Create and compare multiple solutions that use patterns to	Create and compare multiple solutions that use patterns to
	transfer information.* (SEP: 6; DCI: PS4.C, ETS1.C; CCC:	transfer information. (SEP: 6; DCI: PS4.C, ETS1.C; CCC: Patterns)
	Patterns, Technology)	Alignment may include 3-5-ETS1-3

4-ESS3-1	Obtain and combine information to describe that energy and	Obtain and combine information to describe that energy and
	fuels are derived from natural resources and their uses affect	fuels are derived from natural resources and how their uses
	the environment. (SEP: 8; DCI: ESS3.A; CCC: Cause/Effect,	affect the environment. (SEP: 8; DCI: ESS3.A; CCC: Cause/Effect)
	Technology)	
4-ESS3-2	Generate and compare multiple solutions to reduce the	Generate and compare multiple solutions to reduce the impacts
	impacts of natural Earth processes on humans. (SEP: 6; DCI:	of natural Earth processes on humans. (SEP: 6; DCI: ESS3.B,
	ESS3.B, ETS1.B; CCC: Cause/Effect, Technology)	ETS1.B; CCC: Cause/Effect) Alignment may include 3-5-ETS1-2
5-PS1-2	Measure and graph quantities to provide evidence that	Measure and graph quantities to provide evidence that
	regardless of the type of change that occurs when heating,	regardless of the type of change that occurs when heating,
	cooling, or mixing substances, the total weight of matter is	cooling, or mixing substances, the total mass of matter is
	conserved. (SEP: 5; DCI: PS1.A, PS1.B; CCC: Scale/Prop.)	conserved. (SEP: 5; DCI: PS1.A, PS1.B; CCC: Scale/Prop.)
5-PS1-4	Conduct an investigation to determine whether the mixing of	Plan and carry out an investigation to determine if the mixing
	two or more substances results in new substances. (SEP: 3;	of two or more substances results in new substances. (SEP: 3;
	DCI: PS1.B; CCC: Cause/Effect)	DCI: PS1.B; CCC: Cause/Effect)
5-PS2-1	Support an argument that the gravitational force exerted by	Support an evidence-based argument that the gravitational
	Earth on objects is directed down. (SEP: 7; DCI: PS2.B; CCC:	force exerted by Earth on objects is directed toward the center
	Cause/Effect)	of the Earth. (SEP: 7; DCI: PS2.B; CCC: Cause/Effect)
5-LS1-1	Support an argument that plants get the materials they need	Engage in an evidence-based argument that plants get the
	for growth chiefly from air and water. (SEP: 7; DCI: LS1.C; CCC:	materials they need for growth chiefly from air and water. (SEP:
	Energy/Matter)	7; DCI: LS1.C; CCC: Energy/Matter)
5-ESS2-1	Develop a model to describe the interaction of geosphere,	Develop a model to describe the interaction of geosphere,
	biosphere, hydrosphere, and/or atmosphere. (SEP: 2; DCI:	biosphere, hydrosphere, and atmosphere. (SEP: 2; DCI: ESS2.A;
	ESS2.A; CCC: Systems)	CCC: Systems)
5-ESS2-2	Describe and graph the amounts and percentages of water	Describe and graph the amounts and percentages of salt water
	and fresh water in various reservoirs to provide evidence	and fresh water in various reservoirs to provide evidence about
	about the distribution of water on Earth. (SEP: 5; DCI: ESS2.C;	the distribution of water on Earth. (SEP: 4 ; DCI: ESS2.C; CCC:
	CCC: Scale/Prop.)	Scale/Prop.)
MS-PS1-3	Obtain and evaluate information to describe that synthetic	Obtain and evaluate information to describe that synthetic
	materials come from natural resources and impact society.	materials come from natural resources and impact society.
	(SEP: 8; DCI: PS1.A, PS1.B; CCC: Structure/Function,	(SEP: 8; DCI: PS1.A, PS1.B; CCC: Structure/Function)
	Technology)	

MS-PS1-6	Design, construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.* (SEP: 6; DCI: PS1.B, ETS1.B, ETS1.C; CCC: Energy/Matter)	Design, construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes. (SEP: 6; DCI: PS1.B, ETS1.B, ETS1.C; CCC: Energy/Matter) Alignment may include 6-8-ETS1-2; 6-8-ETS1-3; 6-8-ETS1-4
MS-PS2-1	Design a solution to a problem involving the motion of two colliding objects that illustrates Newton's Third Law.* (SEP: 6; DCI: PS2.A; CCC: Systems, Technology)	Design a solution to a problem involving the motion of two colliding objects that illustrates Newton's Third Law. (SEP: 6; DCI: PS2.A, ETS1.B; CCC: Systems) Alignment may include 6-8-ETS1-1
MS-PS2-5	Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. (SEP: 3; DCI: PS2.B; CCC: Cause/Effect)	Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other when the objects are not in contact. (SEP: 3; DCI: PS2.B; CCC: Cause/Effect)
MS-PS3-1	Construct and analyze graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. (SEP: 4; DCI: PS3.A; CCC: Scale/Prop.)	Construct and analyze graphical displays of data to describe the relationships of kinetic energy to the mass and to the speed of an object. (SEP: 4; DCI: PS3.A; CCC: Scale/Prop.)
MS-PS3-3	Design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* (SEP: 6; DCI: PS3.A, PS3.B, ETS1.A, ETS1.B, ; CCC: Energy/Matter)	Design, construct, and test a device that either minimizes or maximizes thermal energy transfer. (SEP: 6; DCI: PS3.A, PS3.B, CCC: Energy/Matter) Alignment may include 6-8-ETS1-1 and 6- 8-ETS1-2
MS-PS4-3	Obtain, evaluate and communicate information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. (SEP: 8; DCI: PS4.C; CCC: Structure, Technology)	Obtain, evaluate, and communicate information to support the evidence-based claim for the reliability of digitized signals to encode and transmit information compared to analog signals . (SEP: 8; DCI: PS4.C; CCC: Structure and Function)
MS-LS1-1	Plan and carry out an investigation to provide evidence that living things are made of cells; either one cell or many different types and numbers of cells. (SEP: 3; DCI: LS1.A; CCC: Scale/Prop., Technology)	Plan and carry out an investigation to provide evidence that living things are made of cells; either one cell or many different types and numbers of cells. (SEP: 3; DCI: LS1.A; CCC: Scale/Prop.)
MS-LS1-3	Construct an argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. (SEP: 7; DCI: LS1.A; CCC: Systems)	Construct an argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells, tissues, and organs . (SEP: 7; DCI: LS1.A; CCC: Systems)

-		
MS-LS1-4	Construct an argument based on empirical evidence and	Construct an evidence-based argument to support an
	scientific reasoning to support an explanation for how	explanation for a) how characteristic animal behaviors affect
	characteristic animal behaviors and specialized plant	the probability of successful reproduction of animals; and b)
	structures affect the probability of successful reproduction of	how specialized structures affect the probability of successful
	animals and plants respectively. (SEP: 7; DCI: LS1.B; CCC:	reproduction of plants. (SEP: 7; DCI: LS1.B; CCC: Cause/Effect)
	Cause/Effect)	
MS-LS2-2	Construct an explanation that predicts patterns of interactions	Construct an explanation that predicts patterns (relationships)
	among organisms across multiple ecosystems. (SEP: 6; DCI:	of interactions among organisms across multiple ecosystems.
	LS2.A; CCC: Patterns)	(SEP: 6; DCI: LS2.A; CCC: Patterns)
MS-LS2-4	Construct an argument supported by empirical evidence that	Construct an evidence-based argument that articulates how
	changes to physical or biological components of an ecosystem	changes to physical or biological components of an ecosystem
	affect populations. (SEP: 7; DCI: LS2.C; CCC: Stability/Change)	affect populations. (SEP: 7; DCI: LS2.C; CCC: Stability/Change)
MS-LS2-5	Evaluate competing design solutions for maintaining	Evaluate competing design solutions for maintaining
	biodiversity and ecosystem services.* (SEP: 7; DCI: LS2.C,	biodiversity and ecosystem preservation practices and services.
	LS4.D, ETS1.B; CCC: Stability/Change, Technology)	(SEP: 7; DCI: LS2.C, LS4.D, CCC: Stability/Change) Alignment
		may include 6-8-ETS1-2
MS-LS4-5	Obtain, evaluate, and communicate information about how	Obtain, evaluate, and communicate information about how
	technological advances have changed the way humans	technological advances have changed the way humans influence
	influence the inheritance of desired traits in organisms. * (SEP:	the inheritance of desired traits in organisms. (SEP: 8; DCI:
	8; DCI: LS4.B; CCC: Cause/Effect, Technology)	LS4.B, ETS1.A; CCC: Cause/Effect) Alignment may include 6-8-
		ETS1-1; 6-8-ETS1-4
MS-ESS1-4		Construct a scientific explanation based on evidence from rock
		strata for how the geologic time scale is used to organize
		Earth's 4.6-billion-year-old history. (SEP: 6; DCI: ESS1.C; CCC:
		Scale/Prop.)
MS-ESS3-1	Construct a scientific explanation based on evidence for how	Construct a scientific explanation based on evidence for how
	the uneven distributions of Earth's mineral, energy, and	the uneven distributions of Earth's mineral, energy, and
	groundwater resources are the result of past and current	groundwater resources are the result of past and current
	geoscience processes. (SEP: 6; DCI: ESS3.A; CCC:	geoscience processes. (SEP: 6; DCI: ESS3.A; CCC: Cause/Effect)
	Cause/Effect , Technology)	

MS-ESS3-2	Analyze and interpret data on natural hazards to forecast	Analyze and interpret data on natural hazards to forecast future
	future catastrophic events and inform the development of	catastrophic events and inform the development of
	technologies to mitigate their effects. (SEP: 4; DCI: ESS3.B;	technologies to mitigate their effects. (SEP: 4; DCI: ESS3.B; CCC:
	CCC: Patterns, Technology)	Patterns)
MS-ESS3-3	Apply scientific principles to design a method for monitoring	Apply scientific principles to design a method for monitoring
	and minimizing a human impact on the environment.* (SEP: 6	and minimizing a human impact on the environment. (SEP: 6;
	; DCI: ESS3.C; CCC: Cause/Effect, Technology)	DCI: ESS3.C, ETS2.B; CCC: Cause/Effect) Alignment may include
		6-8-ETS1-1
HS-PS1-6	Refine the design of a chemical system by specifying a change	Refine the design of a chemical reaction system by specifying a
	in conditions that would produce increased amounts of	change in conditions that would produce increased amounts of
	products at equilibrium.* (SEP: 6; DCI: PS1.B, ETS1.C; CCC:	products at equilibrium. (SEP: 6; DCI: PS1.B, ETS1.C; CCC:
	Stability/Change)	Stability/Change) Alignment may include 9-12-ETS1-3
HS-PS2-3	Design, evaluate, and refine a device that minimizes the force	Design, evaluate, and refine a device that minimizes the force
	on a macroscopic object during a collision.* (SEP: 6; DCI:	on a macroscopic object during a collision. (SEP: 6; DCI: PS2.A,
	PS2.A, ETS1.A, ETS1.C; CCC: Cause/Effect)	ETS1.A, ETS1.C; CCC: Cause/Effect) Alignment may include 9-12-
		ETS1-1, 9-12-ETS1-3
HS-PS2-4	Use mathematical representations of Newton's Law of	(a)Use mathematical representations of Newton's Law of
	Gravitation and Coulomb's Law to describe and predict the	Gravitation to describe and predict gravitational force between
	gravitational and electrostatic forces between objects. (SEP: 5;	objects. (b)Use mathematical representations of Coulomb's Law
	DCI: PS2.B; CCC: Patterns)	to describe and predict electrostatic force between objects.
		(SEP: 5; DCI: PS2.B; CCC: Patterns)
HS-PS2-6	Communicate scientific and technical information about why	Communicate scientific and technical information about why
	the molecular-level structure is important in the functioning of	the molecular-level structure (intermolecular forces) is
	designed materials.* (SEP: 8; DCI: PS1.A, PS2.B; CCC:	important in the functioning of designed materials. (SEP: 8; DCI:
	Structure/Function)	PS1.A, PS2.B, ETS1.A; CCC: Structure/Function) Alignment may
		include 9-12-ETS1-1
HS-PS3-2	Develop and use models to illustrate that energy at the	Develop and use models to illustrate that energy at the
	macroscopic scale can be accounted for as a combination of	macroscopic scale can be accounted for as a combination of the
	energy associated with the motions of particles (objects) and	energy associated with the motion and relative position of
	energy associated with the relative position of particles	particles (objects). (SEP: 2; DCI: PS3.A; CCC: Energy/Matter)
	(objects). (SEP: 2; DCI: PS3.A; CCC: Energy/Matter)	

HS-PS3-3	Design, build, and refine a device that works within given	Design, build, and refine a device that works within given
	constraints to convert one form of energy into another form	constraints to convert one form of energy into another form of
	of energy. (SEP: 6; DCI: PS3.A, PS3.D, ETS1.A; CCC:	energy. (SEP: 6; DCI: PS3.A, PS3.D, ETS1.C ; CCC: Energy/Matter)
	Energy/Matter, Technology)	Alignment may include 9-12-ETS1-2
HS-PS3-4	Plan and carry out an investigation to provide evidence that	Plan and carry out an investigation to provide evidence for the
	the transfer of thermal energy when two components of	Second Law of Thermodynamics. (SEP: 3; DCI: PS3.B, PS3.D;
	different temperature are combined within a closed system	CCC: Systems)
	results in a more uniform energy distribution among the	
	components in the system (Second Law of Thermodynamics).	
	(SEP: 3; DCI: PS3.B, PS3.D; CCC: Systems)	
HS-PS4-2	Evaluate questions about the advantages of using a digital	Evaluate questions about the advantages of using a digital
	transmission and storage of information. (SEP: 1; DCI: PS4.A;	transmission and storage of information. (SEP: 1; DCI: PS4.A,
	CCC: Stability/Change, Technology)	ETS2.A; CCC: Stability/Change) Alignment may include 9-12-
		ETS1-1
HS-PS4-4	Evaluate the validity and reliability of claims in published	Engage in an evidence-based argument for the effects that
	materials of the effects that different frequencies of	different frequencies of electromagnetic radiation have when
	electromagnetic radiation have when absorbed by matter.	absorbed by matter. (SEP: 7; DCI: PS4.B; CCC: Cause/Effect)
	(SEP: 8; DCI: PS4.B; CCC: Cause/Effect)	
HS-PS4-5	Communicate technical information about how some	Communicate technical information about how some
	technological devices use the principles of wave behavior and	technological devices use the principles of wave behavior and
	wave interactions with matter to transmit and capture	wave interactions with matter to transmit and capture
	information and energy.* (SEP: 8; DCI: PS3.D, PS4.A, PS4.B,	information and energy. (SEP: 8; DCI: PS3.D, PS4.A, PS4.B, PS4.C,
	PS4.C; CCC: Cause/Effect, Technology)	ETS2.A; CCC: Cause/Effect) Alignment may include 9-12-ETS1-1
HS-LS1-1	Construct an explanation based on evidence for how the	Construct an explanation based on evidence for how the
	structure of DNA determines the structure of proteins which	structure of DNA determines the structure of proteins which
	carry out the essential functions of life through systems of	carry out the essential functions of life through systems of
	specialized cells. (SEP: 6; DCI: LS1.A; CCC: Structure/Function)	specialized cells, tissues, and organs. (SEP: 6; DCI: LS1.A; CCC:
		Structure/Function)
HS-LS2-7	Design, evaluate, and refine a solution for reducing the	Design, evaluate, and refine a solution for reducing the impacts
	impacts of human activities on the environment and	of human activities on the environment and biodiversity. (SEP:
	biodiversity.* (SEP: 6; DCI: LS2.C, LS4.D, ETS1.B; CCC:	6; DCI: LS2.C, LS4.D, ETS1.B, ETS1.C; CCC: Stability/Change)
	Stability/Change)	Alignment may include 9-12-ETS1-2 and 9-12-ETS1-3

-		
HS-LS4-6	Use a simulation to research and analyze possible solutions for the adverse impacts of human activity on biodiversity. (SEP: 5; DCI: LS4.C, LS4.D, ETS1.B; CCC: Cause/Effect)	Use a simulation to research and analyze possible solutions for the adverse impacts of human activity on biodiversity. (SEP: 5; DCI: LS4.C, LS4.D, ETS1.B; CCC: Cause/Effect) Alignment may include 9-12-ETS1-3 and 9-12-ETS1-4
HS-LS4-7	Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy. (SEP: 4; DCI: LS4.A; CCC: Patterns)	Remove this standard
HS-ESS1-4	Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. (SEP: 5; DCI: ESS1.B; CCC: Scale/Prop., Technology)	Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. (SEP: 5; DCI: ESS1.B; CCC: Scale/Prop.)
	No standard	HS-ESS2-1 Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. (SEP: 2; DCI: ESS2.A, ESS2.B; CCC: Stability/Change)
HS-ESS2-1	Analyze geoscience data to make the claim that one change to Earth's surface can create feedback that cause changes to other Earth systems. (SEP: 2; DCI: ESS2.A, ESS2.B; CCC: Stability/Change)	9-12-ESS 2-2
HS-ESS2-2	Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection. (SEP: 4; DCI: ESS2.A, ESS2.D; CCC: Stability/Change, Technology)	9-12-ESS 2-3 Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection. (SEP: 4; DCI: ESS2.A, ESS2.D; CCC: Stability/Change)
HS-ESS2-3	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. (SEP: 2; DCI: ESS2.A, ESS2.B, PS4.A; CCC: Energy/Matter, Technology)	9-12-ESS 2-4 Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate. (SEP: 2; DCI: ESS2.A, ESS2.B, PS4.A; CCC: Energy/Matter)
HS-ESS2-4	Plan and carry out an investigation of the properties of water and its effects on Earth materials and surface processes. (SEP: 2; DCI: ESS1.B, ESS2.A, ESS2.D; CCC: Cause/Effect)	9-12-ESS 2-5 Plan and carry out an investigation of the properties of water and its effects on Earth's materials and surface processes (erosion, water pollution, etc.) . (SEP: 2; DCI: ESS1.B, ESS2.A, ESS2.D; CCC: Cause/Effect)

HS-ESS3-1	Construct an explanation based on evidence for how the	Construct an explanation based on evidence for how the
	availability of natural resources, occurrence of natural	availability of natural resources, occurrence of natural hazards,
	hazards, and changes in climate have influenced human	and changes in climate have influenced human activity. (SEP: 6;
	activity. (SEP: 6; DCI: ESS3.A, ESS3.B; CCC: Cause/Effect,	DCI: ESS3.A, ESS3.B; CCC: Cause/Effect)
	Technology)	
HS-ESS3-2	Evaluate competing design solutions for developing,	Evaluate competing design solutions for developing, managing,
	managing, and utilizing energy and mineral resources based	and utilizing energy and mineral resources based on cost-
	on cost-benefit ratios.* (SEP: 7; DCI: ESS3.A, ETS1.B; CCC:	benefit ratios. (SEP: 7; DCI: ESS3.A, ETS1.B; CCC: Energy and
	Technology)	Matter) Alignment may include 9-12-ETS1-3
HS-ESS3-3	Create a computational simulation to illustrate the	Create a computational simulation to illustrate the relationships
	relationships among management of natural resources, the	among management of natural resources, the sustainability of
	sustainability of human populations, and biodiversity. (SEP: 5;	human populations, and biodiversity. (SEP: 5; DCI: ESS3.C; CCC:
	DCI: ESS3.C; CCC: Stability/Change, Technology)	Stability/Change)
HS-ESS3-4	Evaluate or refine a technological solution that reduces	Evaluate or refine a technological solution that reduces impacts
	impacts of human activities on natural systems.* (SEP: 6; DCI:	of human activities on natural systems. (SEP: 6; DCI: ESS3.C,
	ESS3.C, ETS1.B; CCC: Stability/Change, Technology)	ETS1.B; CCC: Stability/Change) Alignment may include 9-12-
		ETS1-3